

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY

HSTDR 300-000, HSTDR 400-000, HSTDR 600-000, HSTDR 900-000, HSTDR 1000-000, HSTDR 1200-000, HSTDR 1200/SP1-000, HSTDR 1300-000, HSTDR 1500-000

Introduction

The HSTDR-000 family is a transducer for DC, AC, or pulsed currents measurement in high power and low voltage automotive applications. It offers a galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HSTDR-000 family gives you a choice of having different current measuring ranges in the same housing (from $\pm 300 \text{ A}$ up to $\pm 1500 \text{ A}$).

Features

- Open Loop transducer using the Hall effect sensor
- High insulation level
- Unipolar +5 V DC power supply
- Primary current measuring range up to ±1500 A
- Operating temperature range: -40 °C < T < +125 °C
- Output voltage: fully ratio-metric (in sensitivity and offset).

Advantages

- Excellent accuracy
- Very good linearity
- Very low thermal offset drift
- Very low thermal sensitivity drift
- High frequency bandwidth
- No insertion losses
- Very fast delay time.

Automotive applications

- Starter Generators
- Inverters
- HEV applications
- EV applications
- DC / DC converters
- DC link.

Principle of HSTDR-000 family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density B, contributing to the rise of the Hall

voltage, is generated by the primary current $I_{\rm P}$ to be measured.

The current to be measured $I_{\rm p}$ is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, *B* is proportional to:

$$B(I_{\rm P}) = a \times I_{\rm P}$$

The Hall voltage is thus expressed by:

$$U_{\text{Hall}} = (c_{\text{Hall}} / d) \times I_{\text{Hall}} \times a \times I_{\text{F}}$$

Except for $I_{\rm P}$, all terms of this equation are constant. Therefore:

U_{Hall} = b >	< I _P
а	constant
b	constant
c_{Hall}	Hall coefficient
d	thickness of the Hall plate
$I_{\rm Hell}$	current across the Hall plates

The measurement signal $U_{\rm Hall}$ amplified to supply the user output voltage or current.

Fig. 1: Principle of the open loop transducer.

Dimensions (in mm)

HSTDR 300-000, HSTDR 400-000, HSTDR 600-000, HSTDR 900-000, HSTDR 1000-000, HSTDR 1200-000, HSTDR 1300-000, HSTDR 1500-000

Dimensions (in mm) HSTDR 1200/SP1-000

Mechanical characteristics

Refer to Outline Drawing.

Mounting recommendation

Assembly refer to Outline Drawing.

18April2024\Version 1

Remark

• $U_{\rm out}$ > $U_{\rm O}$ when $I_{\rm P}$ flows in the positive direction (see arrow on drawing).

Electronic recommendation

 $R_{\rm L} > 10 \ \rm k\Omega$ optional resistor for signal line diagnostic (optional) $C_{\rm L} < 2.2 \ \rm nF$ EMC protection (optional) RC: low pass filter (optional)

Absolute ratings (not operating)

HSTDR xxxx-000

Devementer	Symbol	Unit	S	pecificatio	on	Conditions
Parameter	Symbol	Unit	Min	Typical	Max	Conditions
			0		8	Continuous, not operating
Maximum supply voltage	$U_{ m C\ max}$	V			6.5	Exceeding this voltage may temporarily reconfigure the circuit until $U_{\rm c}$ comes back to 5 V
Ambient storage temperature	T _{Ast}	°C	-40		125	
Electrostatic discharge voltage (HBM - Human Body Model)	$U_{\rm ESD\;HBM}$	kV			8	
RMS voltage for AC insulation test	$U_{\rm d}$	kV			4.7	50 Hz, 1 min, IEC 60664 part1
Creepage distance	d _{Cp}	mm		16.5		
Clearance	d _{ci}	mm		9.5		
Comparative tracking index	CTI	-		PLC3		
Maximum output current	I _{out max}	mA	-10		10	
Maximum output voltage	$U_{\rm outmax}$	V	-0.5		U _c + 0.5	
Insulation resistance	R _{INS}	MΩ	500			1000 V DC

Operating characteristics in nominal range (I_{PN})

Peremeter	Symbol	Unit	Sp	ecificatio	n	Conditions
Parameter	Symbol	Unit	Min	Typical	Max	Conditions
		Electric	al Data			
Supply voltage 1)	U_{c}	V	4.75	5	5.25	
Ambient operating temperature 2)	T _A	°C	-40		125	
Load capacitance	CL	nF			2.2	
Output voltage (Analog)	$U_{\rm out}$	V	$U_{\rm out}$ = ($U_{\rm C}$	/ 5) × (U _o ·	$+ S \times I_{P}$)	
Offset voltage	Uo	V		2.5		@ U _c = 5 V
Current consumption	I _c	mA		15		@ U _c = 5 V, @ T _A = 25 °C
Load resistance	RL	ΚΩ	10			
Output internal resistance	R _{out}	Ω			10	DC to 1 KHz
		Performa	nce Data		·	
Ratiometricity error	€ _r	%		±0.3		@ T _A = 25 °C
Sensitivity error	€ _S	%		±1		@ T _A = 25 °C, @ U _c = 5 V
Electrical offset voltage	U _{oe}	mV		±4		@ T _A = 25 °C, @ U _C = 5 V
Magnetic offset voltage	$U_{ m O~M}$	mV		±2		@ T _A = 25 °C, @ U _C = 5 V
Average temperature coefficient of $U_{\rm OE}$	TCU _{oeav}	mV/°C	-0.08	±0.04	0.08	@ -40 °C < T _A < 125 °C
Average temperature coefficient of <i>S</i>	TCS _{AV}	%/°C	-0.03	±0.01	0.03	@ -40 °C < T _A < 125 °C
Linearity error	εL	% I _{РМ}		±1		@ $U_{\rm C}$ = 5 V, @ $T_{\rm A}$ = 25 °C, @ $I_{\rm P}$ = $I_{\rm P M}$
Delay time to 90 % of the final output value for $I_{\rm PN}$ step	t _{D 90}	μs		2	6	d <i>i</i> /d <i>t</i> = 100 A /µs
Frequency bandwidth 3)	BW	kHz	40			@ -3 dB
Peak-to-peak noise voltage	$U_{\rm no\;pp}$	mV		9		@ DC to 1 MHz for HSTDR 1500-000
Peak-to-peak noise voltage	$U_{\rm no\;pp}$	mV		22		@ DC to 1 MHz for HSTDR 300-000
Phase shift	$\Delta \varphi$	•	-4			@ 1 kHz

¹⁾ The output voltage U_{out} is fully ratiometric. The offset and sensitivity are dependent on the supply voltage U_{C} relative to the following formula: Notes:

 $I_{\mathsf{P}} = \left(\frac{5}{U_{\mathsf{C}}} \times U_{\mathsf{out}} - U_{\mathsf{O}}\right) \times \frac{1}{S} \text{ with } S \text{ in (V/A)}$

²⁾ Absolute maximum ambient operating temperature (include busbar): +150 °C
 ³⁾ Primary current frequencies must be limited in order to avoid excessive heating of the sensor higher than 125 °C.

LEM International SA Route du Nant-d'Avril, 152 1217 Meyrin www.lem.com

Page 4/9

HSTDR 300-000						
Parameter	Symbol	Unit	S	pecificatio	on	Conditions
			Min	Typical	Max	Conditions
		Electric	al Data			
Primary current, measuring range	I _{PM}	A	-300		300	
Sensitivity	S	mV/A		6.67		@ U _c = 5 V

HSTDR 400-000

Dovomotor	Symphol	Unit	S	pecificatio	n	Conditions			
Parameter	Symbol		Min	Typical	Max	Conditions			
Electrical Data									
Primary current, measuring range	$I_{\rm PM}$	A	-400		400				
Sensitivity	S	mV/A		5		@ U _c = 5 V			

HSTDR 600-000

Parameter	Symbol	Unit	S	pecificatio	on	Conditiono			
			Min	Typical	Max	Conditions			
Electrical Data									
Primary current, measuring range	I _{PM}	A	-600		600				
Sensitivity	S	mV/A		3.33		@ U _c = 5 V			

HSTDR 900-000

Parameter	Symbol	Unit	S	pecificatio	on	Conditions			
			Min	Typical	Max	Conditions			
Electrical Data									
Primary current, measuring range	$I_{\rm PM}$	A	-900		900				
Sensitivity	S	mV/A		2.22		@ U _c = 5 V			

HSTDR 1000-000

Parameter	Symbol	Unit	S	pecificatio	n	Conditions			
			Min	Typical	Max	Conditions			
Electrical Data									
Primary current, measuring range	$I_{\rm PM}$	A	-1000		1000				
Sensitivity	S	mV/A		2		@ U _c = 5 V			

HSTDR 1200-000, HSTDR 1200/SP1-000

Parameter	Symbol	Unit	S	pecificatio	n	Conditions			
			Min	Typical	Max	Conditions			
Electrical Data									
Primary current, measuring range	$I_{\rm P M}$	A	-1200		1200				
Sensitivity	S	mV/A		1.67		@ U _c = 5 V			

HSTDR 1300-000

Parameter	Symbol	Unit	S	pecificatio	on	Conditions			
			Min	Typical	Max	Conditions			
Electrical Data									
Primary current, measuring range	I _{PM}	А	-1300		1300				
Sensitivity	S	mV/A		1.54		@ U _c = 5 V			

HSTDR 1500-000

Parameter	Symbol	Unit	S	pecificatio	n	Conditions			
			Min	Typical	Max	Conditions			
Electrical Data									
Primary current, measuring range	$I_{\rm P M}$	A	-1500		1500				
Sensitivity	S	mV/A		1.33		@ U _c = 5 V			

Page 5/9

Total error

Primary current	Total <i>T</i> = 2 U _c = 5	error 25 °C, V initial	Total −40 °C ≤ 2 U _c = 5	error r ≤ 125 °C, V initial	Total <i>T</i> = 2 U _c = 5 V Af	error 25 °C, ter reliability	Total error −40 °C ≤ <i>T</i> ≤ 125 °C, <i>U</i> _c = 5 V After reliability		
(A)	(mV)	(%)	(mV)	(%)	(mV)	(%)	(mV)	(%)	
- <i>I</i> _{PM} ≥ −1300	±40	±2 %	±55	±2.75 %	±65	±3.25 %	±70	±3.5 %	
0	±10	±0.5 %	±15	±0.75 %	±15	±0.75 %	±20	±1 %	
I _{PM} ≤ 1300	±40	±2 %	±55	±2.75 %	±65	±3.25 %	±70	±3.5 %	
$-1500 \le -I_{\rm PM} < -1300$	±55	±2.75 %	±70	±3.5 %	±65	±3.25 %	±70	±3.5 %	
1500 ≥ <i>I</i> _{PM} > 1300	±55	±2.75 %	±70	±3.5 %	±65	±3.25 %	±70	±3.5 %	

Remark

Specific application, please refer to LEM document_'Application Note N°ANE230327' available on our Web site: https://www.lem.com/sites/default/files/marketing/hstdr_hsndr_ham_application_note_v0.pdf

Page 6/9

PERFORMANCES PARAMETERS DEFINITIONS

Primary current definition:

Definition of typical, minimum and maximum values:

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %. For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution. Typical, minimum and maximum values are determined during the initial characterization of a product.

Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.

Magnetic offset:

The magnetic offset is the consequence of an any current on the primary side. It's defined after a stated excursion of primary current.

Linearity:

The maximum positive or negative discrepancy with a reference

straight line $U_{out} = f(I_p)$. Unit: linearity (%) expressed with full scale of I_{pN} .

Response time (delay time) $t_{D 90}$:

The time between the primary current signal $(I_{\text{P},N})$ and the output signal reach at 90 % of its final value.

Sensitivity:

The transducer's sensitivity S is the slope of the straight line $U_{\text{out}} = f(I_{\text{P}})$, it must establish the relation:

 $U_{out}(I_{P}) = U_{C}/5 (S \times I_{P} + U_{O})$

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 °C.

The offset variation I_{OT} is a maximum variation the offset in the temperature range:

$$I_{OT} = I_{OE} \max - I_{OE} \min$$

The offset drift $TCI_{O E AV}$ is the $I_{O T}$ value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 °C.

The sensitivity variation S_{τ} is the maximum variation (in ppm or %) of the sensitivity in the temperature range: S_{τ} = (Sensitivity max – Sensitivity min) / Sensitivity at 25 °C. The sensitivity drift *TCS* _{AV} is the $S_{\rm T}$ value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Offset voltage @ $I_p = 0$ A:

The offset voltage is the output voltage when the primary current is zero. The ideal value of $U_{\rm o}$ is $U_{\rm c}$ / 2. So, the difference of $U_0 - U_c/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem. com).

Environmental test specifications:

Refer to LEM GROUP test plan laboratory CO.11.11.515.0 with "Tracking Test Plan Auto" sheet.

Page 7/9

Validation test specifications

HSTDR xxxx-000

Name	Standard	Condition		
ELECTRICAL TESTS				
Frequency bandwidth	LEM 98.20.00.538.0	30 Hz to 100 kHz; At 20 A peak ; ≥ 40 kHz @ −3 dB		
Phase delay	LEM 98.20.00.538.0	Power supply 5 V, $I_{\rm P}$ = 0 A 30 Hz to 100 kHz; At 20 A peak		
Output voltage Noise (peak-to-peak)	LEM 98.20.00.575.0	Sweep from DC to 1 MHz		
Delay time ; d <i>i</i> /d <i>t</i>	LEM 98.20.00.545.0	100 A/μs ; <i>t</i> _{D 90} of <i>I</i> _{P N} ≤ 6 μs		
d <i>u</i> /d <i>t</i>	LEM 98.20.00.545.0	Slope: 5 kV/µs U = 1000 V		
ENVIRONMENTAL TESTS				
Ageing 85 °C /85 % <i>RH</i>	JESD 22-A101 (03/2009)	85 °C/85 % <i>RH</i> ; Duration = 1000 h; Power supply 5 V ; primary current 0 A; Monitoring output 1 time/hr		
Low temperature operating endurance	ISO 16750-4 § 5.1.1.2 (04/2010)	−40 °C, 24 h; Power supply 5 V Monitoring: 2 times/hr		
High temperature operating endurance	ISO 16750-4 § 5.1.2.2 (04/2010)	Temperature 125 °C; 96 h; power supply 5 V Monitoring 2 times/hr		
High temperature storage	AQG 324 (2019) § 9.4	$T = 125 \text{ °C}$; Duration = 1000 h; U_{c} = no powersupply (unconnected)		
Low temperature storage	ISO 16750-4 5.1.1.1(2006)	$T = -40$ °C; Duration = 1000 h; U_c = no powersupply (unconnected)		
Humidity heat, cyclic test: Test 2 Composite temperature/humidity cyclic test	ISO 16750-4 § 5.6.2.3 (04/2010)	Temperature range −10 °C/ +65 °C, 93 % <i>RH</i> Duration = 240 h (10 cycles)		
Thermal shock	ISO 16750-4 § 5.3.2 (04/2010)	Temperature range −40 °C& 125 °C, 300 cycles; 40 min/40 min, no power supply		
Sinus Vibration	ISO 16750-3 § 4.1.2.2.2.2 (12/2012)	Monitoring U_c and U_{out} is mandatory, Temperature -40/125 °C, 22 H/axis, 100 Hz to 440 Hz Sweep: ≤ 0.5 oct/min		
Random Vibration	ISO 16750-3 § 4.1.2.2.2.3 (12/2012)	Monitoring $U_{\rm c}$ and $U_{\rm out}$ is mandatory, Temperature –40/125 °C, 22 H/ axis, 10 to 2000 Hz 10 G (RMS)		
Mechanical Shocks	ISO 16750-3 § 4.2.2 (12/2012)	Operating mode: 3.2 Pulse shape: half sine, 50 G, 6 ms 10 shocks per direction (total 60)		
Free Fall	ISO 16750-3 § 4.3 (12/2012)	3 pcs, Falls/DUT: 2 times, Height = 1 m 3 axes, 2 directions by axis, Operating mode: 1.1		
Cross section checking on PCBA	IPC-A-610G: 2017 Class 3W	IPC-TM-650 2.1.1F:2015		
Cross section checking on solderless connections	GB/T 18290.5-2015	IPC-TM-650 2.1.1F:2015		
Whisker checking on PCBA	Refer to JESD201-A (04/2010)	Refer to JESD22-A121A (04/2010) Class 2		
INSULATION TESTS				
Dielectric withstand voltage	ISO 16750-2 § 4.11 (11/2012)	4.7 kV test voltage, time = 60 s, No dielectric breakdown, no flash- over, functional after test		
Insulation test	ISO 16750-2 § 4.12 (11/2012)	1000 V DC, time = 60 s, $R_{\rm INS} \ge 500$ MΩ Minimum		

Page 8/9

EMC TESTS		
Immunity to Electrostatic Discharges (Handling of devices)	ISO 10605 (07/2008)	Discharge module: 150 pF/2000 Ω Contact discharges: ±4.6 kV, Air discharges: ±8 kV U_c = NO power supply, Criteria B
Immunity to Radiated disturbances (ALSE)	ISO 11452-2 (2019)	Power supply: 5 V f = 400 MHz to 1 GHz; Level = 100 V/m (CW, AM 80 %) f = 0.8 GHz to 2 GHz; Level = 70 V/m (CW, PM PRR = 217 Hz f = 1 GHz to 2 GHz; Level = 70 V/m (CW) Criteria A acceptance @ 5 % of 2 V
Immunity to Conducted disturbances (BCI)	ISO 11452-4 (12/2011)	Level = see Annex E Fig. & Table E.1 (Test Level II) f = 1 MHz to 400 MHz Criteria A acceptance @ 5 % of 2 V
Emission Radiated (ALSE)	CISPR 25 §6.5 (2016)	Table 7, Class 5 by default f = 150 kHz to 2.5 GHz Load simulator will be provided (R&D)

Page 9/9